	AS Biology Term 2 PLC.			
2.1.	i) Know the properties of gas exchange surfaces in living organisms (large surface area to volume ratio, thickness of surface, difference in	Red	Amber	Green
	concentration).			
	ii) Understand how the rate of diffusion is dependent on these			
	properties and can be calculated using Fick's Law of Diffusion.			
	iii) Understand how the structure of the mammalian lung is adapted for			
	rapid gaseous exchange.			
2.2.	i) Know the structure and properties of cell membranes.	Red	Amber	Green
	ii) Understand how models such as the fluid mosaic model of cell			
	membranes are interpretations of data used to develop scientific			
	explanations of the structure and properties of cell membranes.			
	CORE PRACTICAL 3:	Red	Amber	Green
	Investigate membrane structure, including the effect of alcohol			
	concentration or temperature on membrane permeability.			
2.3.	Understand what is meant by osmosis in terms of the movement of free	Red	Amber	Green
	water molecules through a partially permeable membrane			
	(consideration of water potential is not required).			
2.4.	i) Understand what is meant by passive transport (diffusion, facilitated	Red	Amber	Green
	diffusion), active transport (including the role of ATP as an immediate			
	source of energy), endocytosis and exocytosis.			
	ii) Understand the involvement of carrier and channel proteins in			
	membrane transport.			
2.5.	i) Know the basic structure of mononucleotides (deoxyribose or ribose	Red	Amber	Green
	linked to a phosphate and a base, including thymine, uracil, cytosine,			
	adenine or guanine) and the structures of DNA and RNA (polynucleotides			
	composed of mononucleotides linked through condensation reactions).			
	ii) Know how complementary base pairing and the hydrogen bonding			
	between two complementary strands are involved in the formation of			
	the DNA double helix.			
2.6.	i) Understand the process of protein synthesis (transcription) including	Red	Amber	Green
	the role of RNA polymerase, translation, messenger RNA, transfer RNA,			
	ribosomes and the role of start and stop codons.			
	ii) Understand the roles of the DNA template (antisense) strand in			
	transcription, codons on messenger RNA and anticodons on transfer			
	RNA.			
2.7.	Understand the nature of the genetic code (triplet code, non-overlapping	Red	Amber	Green
	and degenerate).			
2.8.	Know that a gene is a sequence of bases on a DNA molecule that codes	Red	Amber	Green
	for a sequence of amino acids in a polypeptide chain.			

2.9.	i) Know the basic structure of an amino acid (structures of specific amino	Red	Amber	Green
2.9.	acids are not required).	neu	Amber	UICEII
	ii) Understand the formation of polypeptides and proteins (amino acid			
	monomers linked by peptide bonds in condensation reactions).			
	iii) Understand the significance of a protein's primary structure in			
	determining its three-dimensional structure and properties (globular and			
	fibrous proteins and the types of bonds involved in its three-dimensional			
	structure).			
	iv) Know the molecular structure of a globular protein and a fibrous			
	protein and understand how their structures relate to their functions			
	(including haemoglobin and collagen).			
2.10.	i) Understand the mechanism of action and the specificity of enzymes in	Red	Amber	Green
	terms of their three-dimensional structure.			
	ii) Understand that enzymes are biological catalysts that reduce			
	activation energy.			
	iii) Know that there are intracellular enzymes catalysing reactions inside			
	cells and extracellular enzymes produced by cells catalysing reactions			
	outside of cells.			
	CORE PRACTICAL 4:	Red	Amber	Green
	Investigate the effect of enzyme and substrate concentrations on the			
	initial rates of reactions.			
2.11.	i) Understand the process of DNA replication, including the role of DNA	Red	Amber	Green
	polymerase.			
	ii) Understand how Meselson and Stahl's classic experiment provided			
	new data that supported the accepted theory of replication of DNA and			
	refuted competing theories.			
2.12.	i) Understand how errors in DNA replication can give rise to mutations.	Red	Amber	Green
	ii) Understand how cystic fibrosis results from one of a number of			
	possible gene mutations.			
2.13.	i) Know the meaning of the terms: gene, allele, genotype, phenotype,	Red	Amber	Green
	recessive, dominant, incomplete dominance, homozygote and			
	heterozygote.			
	ii) Understand patterns of inheritance, including the interpretation of			
	genetic pedigree diagrams, in the context of monohybrid inheritance.			
2.14.	Understand how the expression of a gene mutation in people with cystic	Red	Amber	Green
	fibrosis impairs the functioning of the gaseous exchange, digestive and			
	reproductive systems.			
2.15.	i) Understand the uses of genetic screening, including the identification	Red	Amber	Green
	of carriers, pre-implantation genetic diagnosis (PGD) and prenatal			
	testing, including amniocentesis and chorionic villus sampling.			
	ii) Understand the implications of prenatal genetic screening.			

2.16.	Be able to identify and discuss the social and ethical issues related to	Red	Amber	Green
	genetic screening from a range of ethical viewpoints			