PLC for AS Chemistry for Term 2.						
3.1.3 Bonding						
Ionic bonding involves electrostatic attraction between oppositely charges ions in a lattice	RED	Amber	Green			
Predict the charge on a simple ion using the position of the element in the periodic table	RED	Amber	Green			
Construct formulas for ionic compounds (e.g sulfate, hydroxide, nitrate, carbonate and ammonium)	RED	Amber	Green			
Single covalent bond contains a shared pair of electrons; multiple bonds contain multiple pairs of electrons; co-ordinate (dative covalent) bond shares a pair of electrons, both supplied by 1 atom	RED	Amber	Green			
Represent a covalent bond using a line; co-ordinate bond using an arrow	RED	Amber	Green			
Metallic bonding involves attraction between delocalised electrons and positive ions arranged in a lattice	RED	Amber	Green			
The structures of: diamond, graphite, ice, iodine, magnesium and sodium chloride as examples of one of these 4 crystal structures: ionic, metallic, macromolecular, molecular	RED	Amber	Green			
Relate the melting point and conductivity of materials to the type of structure and bonding present	RED	Amber	Green			
Explain the energy changes associated with changes of state	RED	Amber	Green			
Draw diagrams to represent these structures involving specified numbers of particles	RED	Amber	Green			
Explain the shapes of, and bond angles in, simple molecules and ions with up to six electron pairs (including lone pairs) surrounding the central atom	RED	Amber	Green			
Pairs of electrons as clouds that reel each other, arranging themselves as far apart as possible; with lone pair lone pair repulsion being greater than pair bond, pair bond repulsion	RED	Amber	Green			
Define electronegativity	RED	Amber	Green			
Use partial charges to show that a bond is polar	RED	Amber	Green			
Explain why some molecules with polar bonds do not have a permanent dipole	RED	Amber	Green			
Explain the existence of: permanent dipole-dipole forces; induced dipole- dipole (van der Waals, dispersion, London) forces; hydrogen bonding; between familiar and unfamilar molecules	RED	Amber	Green			

Explain how melting and boiling points are influenced by these	RED	Amber	Green
intermolecular forces			
3.1.4 Energetics	RED	Amber	Green
Understand reactions can be exothermic or endothermic and that enthalpy	RED	Amber	Green
change (Δ H) is the heat energy change measured under conditions of			
constant pressure			
Understand the term standard conditions	RED	Amber	Green
Define standard entahlpy change of combustion ($\Delta_c H^{\theta}$) and standard	RED	Amber	Green
enthalpy change of formation ($\Delta_f H^{\theta}$)			
Use the equation $q=mc\Delta T$ to calculate the molar enthalpy change for a	RED	Amber	Green
reaction and in related calculations			
REQUIRED PRACTICAL 2: Measurement of an enthalpy change	RED	Amber	Green
······································			
Use Hess's law to perform calculations, including calculation of enthalpy	RED	Amber	Green
changes for reactions from enthalpies of combustion or from enthalpies of			
formation			
Define the term mean bond enthalpy	RED	Amber	Green
Use mean bond enthalpies to calculate an approximate value of ΔH for	RED	Amber	Green
reactions in the gaseous state			
Explain why values from mean bond enthalpy calculations differ from	RED	Amher	Green
those determined using Hess's law	NED	7 and Cr	Green
		Australia	Creation
3.1.5 Kinetics	RED	Amber	Green
Define the term activation energy	RED	Amber	Green
Explain why most collisions do not lead to a reaction	RED	Amber	Green
Draw and explain Maxwell-Boltzmann distribution curves for different	RED	Amber	Green
temperatures			
Define the term: rate of reaction	RED	Amber	Green
Use the Maxwell-Boltzmann distribution curve to explain why a small	RED	Amber	Green
increase in temperature can lead to a large increase in rate			
REQUIRED PRACTICAL 3: Investigation of how the rate of a reaction	RED	Amber	Green
changes with temperature			
Explain how a change in concentration or a change in pressure influences	RED	Amber	Green
the rate of a reaction (collision frequency)			

Define the term catalyst and explain how they work (activation energy;	RED	Amber	Green
alternative pathway)			
Use a Maxwell-Boltzmann distribution to help explain how a catalyst	RED	Amber	Green
increases the rate of a reaction involving a gas			
3.1.6 Chemical equilibria, Le Chatelier's principle and $\ensuremath{\mbox{K}_{\mbox{c}}}$	RED	Amber	Green
Explain what is happening in a reversible reaction at equilibrium	RED	Amber	Green
Use Le Chatelier's principle to predict qualitatively the effect of changes in	RED	Amber	Green
temperature, pressure and concentration on the position of equilibrium			
(Catalysts do not affect it)			
Explain why, for a reversible reaction used in an industrial process, a	RED	Amber	Green
compromise temperature and pressure may be used			
Construct an expression for Kc for a homogeneous system in equilibrium	RED	Amber	Green
(using [X] for a species X of mol dm ⁻³ concentration)			
Calculate a value for Kc from the equilibrium concentrations for a	RFD	Amber	Green
homogeneous system at constant temperature	1120	7	Green
Perform calculations involving Kc	PED	Ambor	Green
	RED	Amber	Green
Predict the qualitative effects of changes of temperature on the value of Ko	PED	Ambor	Green
redict the qualitative effects of changes of temperature of the value of Ke	NLD	Amber	Green
3.1.7 Oxidation, reduction and redox equations	RFD	Amber	Green
			-
Understand the terms oxidation and reduction in terms of electrons	RED	Amber	Green
Work out the oxidation state of an element in a compound or ion from the	RED	Amber	Green
Write half equations identifying the oxidation and reduction processes in	RED	Amber	Green
redox reactions			
Combine half equations to give an overall redox equation	RED	Amber	Green