Academic outline 2022-23

A Level Mathematics						
	Term 1 Aug-Oct	Term 2 Nov-Dec	Term 3 Jan-Feb	Term 4 Mar-Apr	Term 5 Apr-May	Term 6 Jun-Jul
Year 12:	- Pure Chapter 1 Algebraic Expressions - Pure Chapter 2 Quadratic Functions - Pure Chapter 3 Equations/Inequalities - Pure Chapter 4 Graphs/Transformations - Pure Chapter 5 Straight Line Graphs - Pure Chapter 6 - Circles	- Pure Chapter 9 Trigonometric ratios and graphs - Pure Chapter 7 Algebraic Fractions/Factor Theorem/Proof - Pure Chapter 11 Vectors - Applied Chapter 1 - Statistical Sampling - Applied Chapter 2 - Data presentation and interpretation - Applied Chapter 8 - Quantities and units in mechanics - Applied Chapter 9 - Kinematics 1	- Pure Chapter 12 Differentiation - Pure Chapter 10 Trigonometric ratios and graphs - Pure Chapter 8 Binomial Expansion - Applied Chapter 3 Data presentation and interpretation	- Pure Chapter 13 Integration - Pure Chapter 14 Exponentials and Logarithms - Applied Chapter 10 - Forces and Newton's laws	- Applied Chapter 4 - Data presentation and interpretation - Applied Chapter 5 - Probability - Applied Chapter 6 - Statistical Distributions - Applied Chapter 7 - Statistical Hypothesis Testing - Applied Chapter 11 - Kinematics 2	

Curriculum overview

| Subject | Mathematics | Year group |
| :---: | :--- | :---: | :---: |
| Vision
 statement: | At Landau Forte our curriculum exists to ensure all students regardless of background and ability have the opportunity to unlock their potential. We are committed to
 students being challenged from their previous key stage learning experiences. Our broad and balanced curriculum is ambitious, coherently planned and sequenced,
 and will provide the platform for preparing students with the foundations for examination success.
 Our Curriculum Intent has been informed by a wide variety of researchers and is steeped in evidence based research. Christine Counsell summarises the aspiration of
 our curriculum to empower all learners creating a pathway to success in university, their career and life:
 A curriculum exists to change the pupil, to give the pupil new power. One acid test for a curriculum is whether it enables even lower attaining or disadvantaged pupils
 to clamber into the discourse and practices of educated people, so that they gain powers of the powerful.'
 As well as excellent academic success we aim to ensure our students leave us as polite and well-rounded young adults. Our new core values of Compassion, Courage
 and Curiosity are currently being embedded throughout our curriculum offer to ensure we continue to meet our social, emotional, spiritual and moral obligations. | |

Curriculum intent:

All students acquire the mathematical life skills necessary for the world of work, no matter what their starting point is, catering for all abilities and backgrounds. We have a strong belief that all students can achieve in Maths.
Students will be taught to have a firm understanding of number bonds and be confident in using non-calculator strategies for solving problems. Students will be stretched and challenged through problem solving tasks to develop resilience.
Students are encouraged to show courage through attempting questions in environment where other students show compassion through a culture of being nonjudgmental when questions are answered incorrectly. Students are also encouraged to show curiosity through asking questions and taking a genuine interest in the real life applications of the Maths that they are learning.
This will be achieved by staff working together in planning lessons that allow ALL students to achieve/ exceed their potential through:
Common lesson planning formats; Expert knowledge of the subject; Differentiated material;
Regular use of AfL to assess progress in a lesson; Regular use of formal marking and feedback;
Regular summative assessments to ensure appropriate progress and intervention.

Threshold Concepts (TCs):

TC1 Algebraic manipulation - This concept involves recognising mathematical properties and relationships using symbolic representation
TC2 Number sense - This concept involves understanding the number system and how they are used in a wide variety of mathematical ways
TC3 Shape facts - This concept involves recognising the names and properties of geometry shapes and angles.
TC4 Multiplicative reasoning - This concept involves using ratio and proportion and understanding of reciprocals in real world applications
TC5 Representing and interpreting data - This concept involves interpreting, manipulating and presenting data in various ways.
TC6 Calculator skills - This concept involves fluent application of mathematical operations on a scientific calculator
TC7 Understanding and calculating risk - This concept involves knowing the rules of probability in the correct context

The national curriculum for mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas. The programme of study for key stage 4 is organised into apparently distinct domains, but pupils should develop and consolidate connections across mathematical ideas. They should build on learning from key stage 3 to further develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems. They should also apply their mathematical knowledge wherever relevant in other subjects and in financial contexts.

Content
(Linked to TCs):

Algebra and functions Algebraic expressions basic algebraic manipulation, indices and surds
Quadratic functions factorising, solving, graphs and the discriminants Equations quadratic/linear simultaneous
nequalities - linear and quadratic (including graphical solutions) Graphs - cubic, quartic and reciprocal
Transformations transforming graphs $\mathrm{f}(\mathrm{x})$ notation

Coordinate geometry in

 the (x, y) planeStraight-line graphs, parallel/perpendicular, length and area problems
Circles - equation of a circle, geometric problems on a grid
Trigonometric ratios and graphs

Further algebra

Algebraic Fraction \& dividing polynomials The factor Theorem Mathematical Proof and methods of proof

Vectors (2D)

Definitions, magnitude/direction, addition and scalar multiplication Position vectors, distance between two points, geometric problems

Statistical sampling

 Introduction to sampling terminology; Advantages and disadvantages of samplingUnderstand and use

Differentiation Definition,

 differentiating polynomials, second derivatives Gradients, tangents, normals, maxima and minima
Trigonometry

Trigonometric identities and equations

Further algebra

The Binomial expansion

Data presentation and

 interpretation Interpret diagrams for single-variable data; Interpret scatter diagrams and regression lines; Recognise and interpret outliers; Draw simple conclusions from statistical problems sampling techniques; Compare sampling techniques in context
Data presentation and

 interpretationCalculation and interpretation of measures of location; Calculation and interpretation of measures of variation;

Integration

 Definition as opposite of differentiation, indefinite integrals of xn Definite integrals and areas under curves
Exponentials and

 logarithmsExponential functions and natural logarithms

Forces \& Newton's laws

 Newton's first law, force diagrams, equilibrium, introduction to i, j system Newton's second law, 'F = ma', connected particles (no resolving forces or use of $F=\mu R$); Newton's third law: equilibrium, problems involving smooth pulleys HUnit7a
Data presentation and interpretation

Interpret diagrams for single-variable data; Interpret scatter diagrams and regression lines; Recognise and interpret outliers; Draw simple conclusions from statistical problems

Probability

Mutually exclusive events; Independent events

Statistical distributions

Use discrete
distributions to model real-world situations; dentify the discrete uniform distribution; Calculate probabilities using the binomial distribution (calculator use expected)

Statistical hypothesis testing
Language of hypothesis testing; Significance levels
Carry out hypothesis tests involving the binomial distribution

Kinematics 2 (variable acceleration)

Consolidation of year 12 work

root, standard form, surd, rationalise, exact, manipulate, sketch, plot, quadratic, maximum, minimum, turning point, discriminant, real roots, repeated roots, intercepts.

Factorise, intersection, root, manipulate, sketch, plot, quadratic, maximum, minimum, turning point, transformation, translation, polynomial, discriminant, real roots, repeated roots, factor theorem, quotient, intercepts, inequality, asymptote.

Equation, bisect, centre, chord, circle, circumcircle, coefficient, constant, diameter, gradient, hypotenuse, intercept, isosceles, linear, midpoint, parallel, perpendicular,
proportion, Pythagoras, radius, right angle, segment, semicircle, simultaneous, tangent.

Binomial, coefficient probability, proof, assumptions, deduction, exhaustion, disproof, counter-example, polynomials, factorisation, quadratic, cubic, quartic, conjecture, prediction, rational number, implies, necessary, sufficient, converse, fully factorise, factor, expand, therefore, conclusion.

Vector, scalar, magnitude, direction component, parallel, perpendicular, modulus, dimension, ratio, collinear, scalar product, position vectors.

Population, census, sample, sampling unit, sampling frame, simple random sampling, stratified, systematic, quota, opportunity (convenience) sampling.

Mean, median, mode, variance, standard deviation, range, interquartile range, interpercentile range, outlier, skewness, symmetrical, positive skew, negative skew

Force, newtons, mass, weight, gravity, tension, thrust, compression, air resistance, reaction, driving force, braking force, resultant, force diagram, equilibrium, inextensible, light, negligible, particle, smooth, uniform, pulley, string, retardation, free particle.
variable, continuous random variable, mathematical modelling, independent, mutually exclusive, Venn diagram, tree diagram.

Binomial, probability discrete distribution, discrete random variable, uniform cumulative probabilities.

Hypotheses, significance level, one-tailed test, wo-tailed test, test statistic, null hypothesis, alternative hypothesis, critical value, critical region, acceptance region, p -value, binomial model, accept, reject sample, inference.

Distance, displacement, velocity, speed, constant acceleration, variable acceleration,
retardation, deceleration, gradient, area, differentiate, integrate, rate of change, straight-line motion, with respect to time, constant of integration, initial conditions.

