Curriculum overview

Subject	Mathematics	Year group		
$\begin{array}{c}\text { Vision } \\ \text { statement: }\end{array}$	$\begin{array}{l}\text { At Landau Forte our curriculum exists to ensure all students regardless of background and ability have the opportunity to unlock their } \\ \text { potential. We are committed to students being challenged from their previous key stage learning experiences. Our broad and balanced } \\ \text { curriculum is ambitious, coherently planned and sequenced, and will provide the platform for preparing students with the foundations } \\ \text { for examination success. }\end{array}$			
Our Curriculum Intent has been informed by a wide variety of researchers and is steeped in evidence based research. Christine Counsell				
summarises the aspiration of our curriculum to empower all learners creating a pathway to success in university, their career and life:			$]$	'A curriculum exists to change the pupil, to give the pupil new power. One acid test for a curriculum is whether it enables even lower
:---				
attaining or disadvantaged pupils to clamber into the discourse and practices of educated people, so that they gain powers of the				
powerful.'				

	CURIOSITY		COMPASSION		COURAGE	
	CRITICAL THINKING	ORGANISATION	 COLLABORATION			
	Term 1 Aug-Oct	Term 2 Nov-Dec	Term 3 Jan-Feb	Term 4 Mar-Apr	Term 5 Apr-May	Term 6 Jun-Jul
The Big Question						
Big picture questions:	How do I manipulate algebra to help me solve problems? How do I solve problems with straight line graphs and circles?	What are the applications of trigonometry? How can I solve more complex algebraic problems? How do we describe movement in Maths? How can I use sampling in practice? What is the difference between scalar and vector quantities?	What is differentiation? How can I use data to draw conclusions?	What are the applications of trigonometry? How can I solve more complex algebraic problems? How can I use a calculator to calculator work out multiple probabilities? How can I apply Newton's laws?	What are the applications of integration? What are the uses of logs? How can I use a variety of techniques to interpret the probability of an event happening? What is a hypothesis test?	How does differentiation and integration help in mechanics? What is a partial fraction?

	CURIOSITY		COMPASSION		COURAGE	QEMS
		How can I use the SUVAT equations to solve problems?				
Content (Linked to TCs):	TC1 Algebraic manipulation TC3 Shape facts	TC1 AlgebraicmanipulationTC3 Shape factsTC5 Representingand interpretingdataTC6 Calculator skills	TC1 Algebraic manipulation TC5 Representing and interpreting data TC6 Calculator skills	TC1 Algebraic manipulation TC3 Shape facts TC6 Calculator skills TC7 Understanding and calculating risk	Integration Definition as opposite of differentiation, indefinite integrals of xn Definite integrals and areas under curves	Kinematics 2 (variable acceleration) Variable force; Calculus to determine rates of change for kinematics Use of integration for kinematics problems
	Algebra and functions Algebraic expressions - basic algebraic manipulation, indices and surds					
		Trigonometric ratios and graphs	Definition, differentiating	Trigonometric identities and		
	Quadratic functions factorising, solving, graphs and the discriminants	Further algebra	polynomials, second derivatives	equations	Exponentials and logarithms	
		Algebraic Fraction \& dividing polynomials	Gradients, tangents, normals, maxima	Further algebra The Binomial	Exponential functions and	Algebraic Methods
	Equations quadratic/linear simultaneous	The factor Theorem Mathematical Proof	and minima	expansion	natural logarithms	Proof: Examples including proof by deduction* and
	Inequalities - linear and quadratic (including graphical solutions) Graphs - cubic, quartic and reciprocal	and methods of proof	Data presentation and interpretation Interpret diagrams	Probability Mutually exclusive events;	Statistical distributions Use discrete	proof by contradiction
		Vectors (2D) Definitions,	for single-variable data; Interpret	Independent events	distributions to model real-world	Algebraic and partial fractions
		magnitude/direction, addition and scalar multiplication	scatter diagrams and regression lines; Recognise and	Forces \& Newton's laws	situations; Identify the discrete uniform distribution;	Simplifying algebraic fractions Partial fractions

$\begin{aligned} & \text { QEMS } \\ & \text { Q } \end{aligned}$	CURIOSITY		COMPASSION		COURAGE	
	Transformations transforming graphs $f(x)$ notation Coordinate geometry in the (x, y) plane Straight-line graphs, parallel/perpendicular, length and area problems Circles - equation of a circle, geometric problems on a grid	Position vectors, distance between two points, geometric problems Statistical sampling Introduction to sampling terminology; Advantages and disadvantages of sampling Understand and use sampling techniques; Compare sampling techniques in context Data presentation and interpretation Calculation and interpretation of measures of location; Calculation and interpretation of measures of variation; Understand and use coding Quantities and units in mechanics	interpret outliers; Draw simple conclusions from statistical problems	Newton's first law, force diagrams, equilibrium, introduction to i, j system Newton's second law, 'F = ma', connected particles (no resolving forces or use of $F=\mu R$); Newton's third law: equilibrium, problems involving smooth pulleys HUnit7a	Calculate probabilities using the binomial distribution (calculator use expected) Statistical hypothesis testing Language of hypothesis testing; Significance levels Carry out hypothesis tests involving the binomial distribution	

$\begin{aligned} & \text { QEMS } \\ & \text { Q } \end{aligned}$	CURIOSITY		COMPASSION		COURAGE	
	quotient, intercepts, inequality, asymptote. Equation, bisect, centre, chord, circle, circumcircle, coefficient, constant, diameter, gradient, hypotenuse, intercept, isosceles, linear, midpoint, parallel, perpendicular, proportion, Pythagoras, radius, right angle, segment, semicircle, simultaneous, tangent.	modulus, dimension, ratio, collinear, scalar product, position vectors. Population, census, sample, sampling unit, sampling frame, simple random sampling, stratified, systematic, quota, opportunity (convenience) sampling. Mean, median, mode, variance, standard deviation, range, interquartile range, interpercentile range, outlier, skewness, symmetrical, positive skew, negative skew. Modelling, smooth, rough, light, inelastic, inextensible, particle, rigid body, mass, weight, rod,		gravity, tension, thrust, compression, air resistance, reaction, driving force, braking force, resultant, force diagram, equilibrium, inextensible, light, negligible, particle, smooth, uniform, pulley, string, retardation, free particle.	Hypotheses, significance level, one-tailed test, twotailed test, test statistic, null hypothesis, alternative hypothesis, critical value, critical region, acceptance region, p-value, binomial model, accept, reject, sample, inference.	

$\begin{array}{ll} \text { QEMS } \\ \hline \end{array}$	CURIOSITY		COMPASSION		COURAGE	
Key/Historical misconceptions in this unit:	What it means to have a real root.	Confusion of constant and variable acceleration, distance time graphs and velocity time graphs	Recalling basic trigonometry Differentiation for first principals, understanding limits, integrating with respect to the incorrect variable	Using the correct base for natural logs, rearranging logs and exponentials, laws of logs	Two tailed and one tailed, level of significance, interchanging horizontal and vertical transformations formations, interchanging stretch and compressions of transformations Incorrectly using the tabulated values. Integer values for binomial distribution, binomial PD and binomial CD.	Whether to differentiate or integrate for mechanics
Sequencing:	We have chosen to sequence the year 12 curriculum like this because it builds on the higher concepts learnt in year 11 and progresses forward to provide students with the skills for year 13. Students start with the key algebraic topics which underpin most of the topics which will follow over the course.					

