Definitions

The displacement of a point B from a point A is the shortest distance from A to B, together with the direction as it is a vector.
Mean speed $=\frac{\text { total distance travelled }}{\text { total time taken }}=\frac{\Delta x}{\Delta t}$
Instantaneous speed = rate of change of distance.
Mean velocity $=\quad \frac{\text { total displacement }}{\text { total time taken }}$
Instantaneous velocity = rate of change of displacement.
Mean acceleration $=\frac{\text { change in velocity }}{\text { time taken }}=\frac{\Delta v}{\Delta t}$
Instantaneous acceleration = rate of change of velocity.
Note; displacement, velocity and acceleration are vectors.

Displacement-time graphs
x-t graphs:

The gradient of the graph represents the velocity, steeper lines mean a higher velocity. Using tangents to the curve and calculating their gradient allows you to calculate the velocity at any point.

Acceleration Due to Gravity

You need to be able to work out speeds, distances and times for objects moving vertically in a uniform gravitational field with an acceleration of g. As g is a constant acceleration you can use the equations of motion. But because g acts downwards, you need to be careful about directions. To make it clear, there's a sign convention: upwards is positive, downwards is negative.

- g is always downwards, so it's usually negative.
- t is always positive.
- u and \boldsymbol{v} can be either positive or negative.
- $\quad s$ can be either positive or negative.

Case 1: No initial velocity
This means an object is just falling - initial velocity $\boldsymbol{u}=0$. Acceleration $\mathrm{a}=\boldsymbol{g}=-9.81 \mathrm{~ms}^{-2}$. Hence the equations of motion become:

$$
\begin{array}{ll}
v=g t & v^{2}=2 g s \\
s=\frac{1}{2} g t^{2} & s=\frac{1}{2} v t
\end{array}
$$

Case 2: An initial velocity upwards

This means it's projected up into the air. The equations of motion are just as normal, but with $a=g=-9.81 \mathrm{~ms}^{-2}$.

Case 3: An initial velocity downwards

This is like case 2 - the equations of motion are as normal with
$a=g=-9.81 \mathrm{~ms}^{-2}$.

Free Fall

When there is gravity acting on an object and nothing else. Defined as the motion if an object undergoing an acceleration of ' g '

- Acceleration is a vector ' g ' acts vertically down

Magnitude of ' g ' is $9.81 \mathrm{~ms}^{-2}$
The only force acting on an object in free fall is its weight

- Objects can have an initial velocity in any direction and still undergo free fall as long as the force providing the initial velocity is no longer acting

Displacement-time graphs

v-t graphs:

The gradient of the line is the acceleration and the area under the line is the displacement. Note that the displacement may be negative.

Projectile Motion

Any object given an initial velocity and then left to move freely under gravity is a projectile

Horizontal and vertical components of the objects motion are completely independent

Follow a curved path because the horizontal velocity remains constant, while the vertical velocity is affected by the acceleration due to gravity, g

Projectile motion at an angle

Resolve the initial velocity into horizontal and vertical components

Use the vertical component to work out how long its in the air and/or how high it goes

Use the horizontal component to work out how far it goes in the horizontal direction while its in the air

