Amounts of substance Knowledge organiser

Vocabulary

Relative Atomic
Mass: (Ar)
Relative Molecular Mass: (Mr)

Relative Isotopic
Mass:
Avogadro's con-
stant
Mole

Concentration

Ideal gas

Empirical formula Simplest whole number ratio of the elements in a compound
Molecular formula The actual ratio of elements in a specific compound. Should add up to the Mr.

Balanced full
equation

Ionic equation

Spectator ions

Atom economy
Mr desired product $\times 100$ Mr of all reactants

Calculating moles		
Mass $=\mathbf{M r} \mathbf{x}$ moles		
Mass	g	
Mr	g mole ${ }^{-1}$	
moles	moles	

Calculating concentration

Concentration $=$ moles/Volume

Concentration	$\mathrm{Mol} \mathrm{dm}^{-3}$
moles	moles
Volume	dm^{3}

Ideal gas equation		
		pV = nRT
p	Pressure	Pa (pascals)
V	Volume	m^{3}
n	No. of moles	Moles
R	Boyles gas const.	$\mathrm{J} / \mathrm{mol} \mathrm{K}$.
T	Temperature	K (kelvin)

Method for calculations	
1.	Calculate the number of moles of the know substance
2.	Identify the moles of the unknown using the molar ratio
3.	Use the number of moles for the final calculation

$$
\text { atom economy }=\frac{\text { mass of required product }}{\text { total mass of reactants }} \times
$$

Note: Don't forget to use any associated balancing numbers.
percentage yield $=\frac{\text { mass of product obtained }}{\text { maximum theoretical mass }} \times 100$
Note: Often the theoretical mass is not given directly in the question and will need to be calculated.

