

Amounts of substance Knowledge organiser

and will need to be calculated.

Vocabulary		
Relative Atomic Mass: (Ar)	Average mass of an atom ¹ / ₁₂ th Carbon 12	
Relative Molecular Mass: (Mr)	Average mass of a molecule 1/12 th Carbon 12	
Relative Isotopic Mass:	Average mass of an isotope	
Avogadro's con- stant	The number of particles that make up 1 mole of a substance.	
Mole	The unit the amount of a substance is measured in. The number of particles need to make 12.00g of Carbon-12	
Concentration	The amount of particles in a fixed vol- ume. Measured in moles per litre (Mol dm ⁻³)	
ldeal gas	Idea gases are any gas which behaves in accordance with the ideal gas equa- tion. It does not matter what substanc- es are in the gas.	
Empirical formula	Simplest whole number ratio of the elements in a compound	
Molecular formula	The actual ratio of elements in a specif- ic compound. Should add up to the Mr.	
Balanced full equation	A balanced chemical equation showing all atoms and their relative amounts and states	
lonic equation	An equation which only shows the spe- cies which change during a chemical reaction	
Spectator ions	The ions omitted from an ionic equa- tions because they are not involved	
Atom economy	<u>Mr desired product</u> x100 Mr of all reactants	

Mag	s = Mr x moles		• • • • •	
		Concentrat	Concentration = moles/Volume	
Mass	g	Concentration	Mol dm ⁻³	
Mr	g mole ⁻¹	moles	moles	
moles	moles	Volume	dm ³	
Ideal gas equati	on			
		oV = nRT		
р	Pressure	Pa (pascals)	1 atm = 1x10 ⁵ pa	
V	Volume	m ³	$1m^3 = 1x10^6 cm^3$	
n	No. of moles	Moles		
R	Boyles gas const.	J/mol K.	8.314	
т	Temperature	K (kelvin)	T °C + 273	
Method for calcu	ılations			
 Calculate the know subst Identify the the molar re Use the nur calculation 	e number of moles of the ance moles of the unknown using atio nber of moles for the final	suction bulb for safe pipetting calibration mark univerte	A variety of apparatus used for measuring liquid volumes and for preparing and manipulating solution ons stopper (c) du calibration measurin mark a for cylinder	
atom economy = Note: Don't forget to use ar percentage yield =	nass of required product total mass of reactants y associated balancing numbers. <u>mass of product obtained</u> maximum theoretical mass × 100		4 100 cm ³ or ml 250 cm ³ or ml 5 1 100 cm ³ or ml 6 1 100 cm ³ or ml	