

# Topic 6: Magnetic Fields

Force



1000V

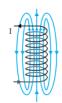
### Magnetic Fields

Magnetic fields are created by current carrying wires, the shape of the field can be predicted by the right-hand grip rule.

#### Long straight wire



Thumb in the direction of the the field.


current, fingers in the direction of

The strength of each field is given by these equations:

$$B = \frac{\mu_o I}{2\pi a}$$

Where a is the distance from the wire to a point.

#### Solenoid



Fingers in the direction of the current, thumb in the direction of the field inside the coil.

$$B = \mu_o nI$$

Where n is the number of turns per meter.

$$n = \frac{number\ of\ turns}{length}$$

The strength can be increased by using an iron core inside the solenoid.

### Fleming's Left-Hand Rule

When a **current** flows through a magnetic field at an angle, a force acts on the wire. The direction of this force is perpendicular to the current and the field, and can be predicted using Fleming's Left-Hand rule.

The size of the force is given by this equation:

$$F = BIl \sin\theta$$

B is the magnetic field strength (or flux density), measured in Tesla (*T*), where 1  $T = 1NA^{-1}$  m<sup>-1</sup>.

As current is defined as the rate of flow of charge the above equation can be expressed in terms of the force on a single charged particle.

$$F = Bqv \sin\theta$$

In both equations,  $\theta$  is the angle between the current and the field lines.

#### Particle Accelerators

When a charged particle is accelerated by a potential difference it gains kinetic energy. In this example an electron is accelerated by a p.d. of 1000V, the energy it gains = 1000 eV, where 1 eV = 1.6 × 10<sup>-19</sup> J.

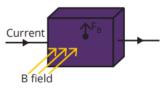
There are 3 types of particle accelerators which use this process. They all use an alternating p.d. to accelerate the particles in the gaps between electrodes.

|                   | Linear                                                                           | Cyclotron                                                                     | Synchotron                                           |
|-------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|
|                   | P 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                          |                                                                               | • • • • • • • • • • • • • • • • • • •                |
| Path              | Straight line                                                                    | Circular but with increasing radius                                           | Circular, constant<br>radius                         |
| Magnetic<br>field | None                                                                             | Constant, to<br>ensure circular<br>motion                                     | Increasing to ensure circular motion with constant r |
| Alternating p.d.  | Constant,<br>increasing length<br>of tube ensures<br>the p.d. changes<br>in time | Constant,<br>increasing path<br>length ensures<br>the p.d. changes<br>in time | Increasing                                           |

## **Charged Particles**

Any moving charges can be deflected by a magnetic field or an electric field.

Magnetic forces always act perpendicular to the motion. Therefore, the magnetic force acts as a centripetal force and makes the charges move in a circular path.


$$Bqv = \frac{mv^2}{r}$$

The **electrical force** between two parallel plates is constant due to the uniform electric field. Therefore, the force acting on the electron here,  $F_{\rm F}$  will cause a vertical acceleration but not change its horizontal velocity.



### Forces on Electrons

# Hall Voltage, V<sub>H</sub>:



When a current flows at 90° through a magnetic field, there will be a force on the electrons flowing through the wire, forcing them to one surface of the conductor. This will cause

one surface to become **negative** and the other **positive**.

This creates an electrical field between the surfaces and cause a force on the electrons in the opposite direction.



In the end, the magnetic force and the electrical force will balance and an equilibrium is reached.

As E = V/d this can be written as

 $V_H = Bvd$  where  $V_H$  is the potential difference between the surfaces. measured with a voltmeter, when this equilibrium is reached. This can be used to measure the strength of B fields as  $\mathbf{B} \propto \mathbf{V}_H$