Radians
The radian is defined as the angle subtended at the centre of a circle by an arc equal in length to the radius. It is equivalent to about 57.3°.

This means that one whole rotation travels through 2π radians.

Angular Velocity

Angular velocity:

Motion in a circle or a cycle can be described by its time period, \boldsymbol{T}, the length of time for 1 cycle and its frequency, f, the number of cycles per second.

$$
T=\frac{1}{f}
$$

For an object describing a circle at uniform speed, the angular velocity, ω, is equal to the angle θ swept out by the radius in time Δt divided by t.

$$
\omega=\frac{\theta}{t}
$$

As the time taken to complete a whole cycle, 2π, is T, the angular velocity can also be calculated by this equation:

$$
\omega=\frac{2 \pi}{T}=2 \pi f
$$

The relationship between the arc length and radius is arc length $=r \theta$ - this is the distance the object travels in time t. This means the speed of the object, v, can be calculated using this equation:

$$
v=\omega r
$$

Centripetal Acceleration and Force
This object is traveling with a constant speed, v, in a circular path. However, its velocity changes due to the direction changing. This means it must be accelerating due to a force acting on the object.
This is known as the centripetal acceleration as it is acting
towards the centre of the circle.

It can be calculated in terms of v, and in terms of ω.

$$
a=\frac{v^{2}}{r}=r \omega^{2}
$$

From Newtons $2^{\text {nd }}$ law; $F=m a$. Therefore, the force acting on the object can be calculated by these equations:

$$
F=\frac{m v^{2}}{r}=m r \omega^{2}
$$

$$
v=\text { velocity in } \mathrm{m} \mathrm{~s}^{-1}
$$

$$
F=\text { force in } \mathrm{N}
$$

$T=$ period of one cycle in s $\quad m=$ mass in kg

$$
f=\text { frequency in } \mathrm{Hz} \quad a=\text { acceleration in } \mathrm{m} \mathrm{~s}^{-2}
$$

ω = angular velocity in rad s ${ }^{-1}$
$r=$ radius in m

