

Y12 Pure Chapter 3—Equations and Inequalities

What do I need to be able to do?

By the end of this chapter you should be able to:

- Solve linear simultaneous equations using elimination or substitution
- Solve simultaneous equations: one linear and one quadratic
- Interpret algebraic solutions of equations graphically
- Solve Inear and quadratic inequalities

Solvina simultaneous equations

- Interpret inequalities graphically
- Represent linear and quadratic inequalities graphically

Y 12 - Chapter 3 Equations and inequalities

<u>Key words:</u>

- Simultaneous equations Two or more equations that share variables
- Equation a mathematical statement containing an equals sign, to show that two expressions are equal. On equation will have a finite set of solutions
- Inequality On inequality compares two values, showing if one is less than, greater than, or simply not equal to another value

Solving simultarieous equations		
Method	Explanation	Works for
Elmination	Make the coefficients of one of the unknowns the same. (whichever seems easier) II Oddi or subtract the equations to eliminate one unknown II Solve the new equation to find the first unknown. II Substitute back into one of the original equations to find the other unknown.	Linear simultaneous equations
Substitution	Rearrange one of the equations (if necessary) to make either x or y the subject. I Substitute into the other equation. I Solve the new equation to find x or y . I Substitute back into your rearranged equation to find the value of the other letter. *If after substituting you get a quadratic equation you can use the discriminant to determine the number of solutions	Linear only and one linear and one quadratic simultaneous equations
Graphically	On the same set of axes draw the graphs of both simultaneous equations The points of intersection will give you the solutions	Linear only and one linear and one quadratic simultaneous equations

Quadratic inequalities Linear inequalities To solve a quadratic inequality: <u>always</u> do a quick sketch We solve linear inequalities the same way we would solve (you will need to know the shape and the roots) then bok equations, except you get a range of solutions instead of for the appropriate part of the graph (i.e. <0 (below the one particular solution. x-axis) or >0 (above the x-axis) depending on what you Eq Solve the inequality 2x - 3 > x + 1 and sketch are looking for). the outcome on a graph. 2x - 3 > x + 1Eq Solve the inequality $x^2 + 4x + 3 \le 0$ 2x > x + 4 $x^2 + 4x + 3 = 0$ x > 4(x+3)(x+1) = 0· 2x · 3 x = -3 or x = -1 These are the roots This is the point where 2x-3 becomes We want the graph to be ≤ 0 so we want to describe greater than x +1 the x values that represent the part of the curve under Remember! If you multiply or the x axis which we_can see is 1≤x≤3 divide an inequality by a negative number you have to reverse the inequality sign Pure Maths Year 1/0S