Y13 Pure Chapter 5—Radians

What do I need to be able to do?

By the end of this chapter you should be able to:

- Convert between degrees and radians
- Know exact values of angles measured in radians
- Find arc length using radians
- Find areas of sectors and segments using radians
- Solve trigonometric equations
- Use small angle approximations

Pure Maths Year 2

Converting between degrees and radians

2π radians = 360° π radians = 180°

I radian = $180/\pi$

$$\times \pi \div 180$$
Degrees Radions
 $\times 180 \div \pi$

Y 13 — Chapter 5 Radians

Key words:

- Radian The angle made by taking the radius and wrapping it round the circle
- Orc length The distance along part of the circumference of a circle, or of any curve
- Sector the area between two radiuses and the connecting arc of a circle
- Segment The smallest part of a circle made when it is cut by a line

Orc lengths, Sectors and Segments

When working in radians:

Orc length = $r\theta$

Orea of sector = $\frac{1}{2}r^2\theta$

Orea of a segment = $\frac{1}{2}r^2(\theta - \sin \theta)$

Solving Trigonometric Equations

This works the same way as solving trigonometric equations in degrees.

$$\sin \theta = \sin(\pi - \theta)$$

$$\cos \theta = \cos(2\pi - \theta)$$

$$\tan \theta = \tan(\pi + \theta)$$

$$-\sin \theta = \sin(\pi + \theta) = \sin(2\pi - \theta)$$

$$-\cos \theta = \cos(\pi - \theta) = \cos(\pi + \theta)$$

$$-\tan \theta = \tan(\pi - \theta) = \tan(2\pi - \theta)$$

Small Ongle Opproximations

When Θ is small and measured in radians:

sin 0 ≈ 0

tan ⊖ ≈ ⊖

$$\cos \Theta \approx 1 - \frac{\Theta^2}{2}$$

