

Y12 Applied Chapter 5—Probability

PROBABILITY

KEY WORDS & DEFINITIONS

- I. Experiment A repeatable process that results in a number of outcomes.
- 2. Event A collection of one or more outcomes.
- Sample Space The set of all possible outcomes. & is the universal set.
- Mutually Exclusive Events that have no outcomes in common.
- Independent When events have no effect on another.
- Intersection When two or more events all happen.
- 7. Union When one or both events happen.
- 8. Complement When an event does not happen.

TREE DIAGRAMS

You can use tree diagrams to show the outcome of

Multiply ALONG the branches

Add all the favourable final probabilities.

WHAT DO I NEED TO KNOW

Probabilities of all possible outcomes add to I Probability values must be between 0 and I

Intersection A \cap **B** \Rightarrow A AND B happen **Union A** \cup **B** \Rightarrow A OR B OR BOTH happen

Complement of A is A' \Rightarrow NOT A P(A') = I - P(A)

Mutually Exclusive events:

P(A U B) * P(A) + P(B)

Independent Events:

 $P(A \cap B) = P(A) \times P(B)$

Probability of B, given A has occurred:

P(D | A)

For independent events:

P(A | B) = P(A | B') = P(A)

In formulae book:

P(A ∪ B) • P(A) + P(B) - P(A ∩ B)

P(B | A) • P(A \cap B)
P(A)

VENN DIAGRAMS

Venn diagrams can be used to show either probabilities or the number of outcomes. n(A) is the number of outcomes while P(A) is the probability of an outcome e.g. n(Aces) = 4 P(Ace) = 4/52

Use cross hatch shading to help you work out probabilities.

Focus on one condition at a time, ignoring the other condition completely when you shade.

If
$$P(A) = //$$
 and $P(B) = \backslash \backslash$

$$P(A \cap B) = \#$$

$$P(A \cup B) = // + // + \#$$