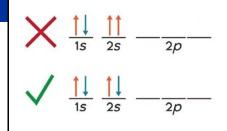


Atomic structure Knowledge organiser

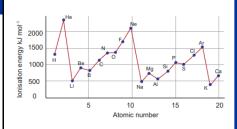
Kevwords	
Mass Number:	Total number of protons and neutrons
Atomic number:	number of protons (smaller no.) also the
lsotope:	An atom that has the same number of pro-
lonisation:	Removal of one or more electrons
First Ionisation Energy:	The energy needed to remove 1 electron from each atom in 1 mole of gaseous atoms.
Second ionisation energy:	The energy needed to remove 1 electron from each atom in 1 mole of gaseous +1 ions. M ⁺ (g) à M ²⁺ (g) + e [.]
Successive ionisa- tion energies:	Removing each electron in turn from a mole of gaseous atoms. Provides evidence of en-
Mass spectrometry	Technique used to calculate the mass of atoms and molecules

Determining relative atomic mass (A) of an element

Rules	for electron	configuration
-------	--------------	---------------


1	Aufbau	"building	up"	principl

- 2 Hund's rule of maximum mult plicity (bus rule)
- 3 Pauli's exclusion principle


nciple	Electrons always fill the lowest energy level first
n multi-	Electrons will fill the empty orbital of an energy level before pairing

When electrons pair in an orbital they have opposite spin

Energy levels			
Energy level	Sub levels	Orbitals	Electrons
1	S	1	2
2	s,p	1,3	8
3	s,p,d	1,3,5	18
4	s,p,d	1,3,5	18

Drops in 1 st ionisation energies across period 3			
Ar	symbol	Electron config	Reason for drop?
13	Al	3s ² 3p ¹	Electron is in p orbital further from nucleus to easier to re- move
16	S	3s ² 3p ⁴	Electron is paired in 3p orbital so easier to remove

Atomic structure Knowledge organiser

Time of flight mass spectrometry		
1	lonisation	Sample dissolved and pushed through nozzle at high pressure and 4000v. As solvent evaporates particles gain a H+ ion
2	Acceleration	+ ions accelerated by -5000v electric field. Have a fixed kinetic energy
3	lon drift	Region of no electric field, so drift (lighter move faster, heavier ions slower.)
4	Detection	+ ions discharge creating a flow of electrons in the detector which registers the current and plots the mass spectrum.

Electrospray ionisation

- The sample X is dissolved in a volatile solvent and injected through a fine hypodermic needle to give a fine mist (aerosol).
- The tip of the needle is attached to the positive terminal of a high-voltage power supply.
- The particles are ionised by gaining a proton from the solvent as they leave the needle producing XH+ ions (ions with a single positive charge and a mass of Mr + 1).
- The solvent evaporates away while the XH+ ions are attracted towards a negative plate where they are accelerated.
 C2H5OH (g) + H+ à C2H6OH+ (g)
- Fragmentation rarely takes place

Fragmentation

- If fragmentation occurs, the peak at the highest m/z on the mass spectrum is formed by the heaviest ion that passes through the spectrometer. Unless all molecules of the original substance break up, this corresponds to the molecular ion of the sample substance.
- Although the molecular ion peak for 2 isomers will be the same m/z value, fragmentation patterns will be different