

Thermodynamics Knowledge organiser

1. Keywords	
Standard enthal- py change of atomisation Δ_{at} H°	The enthalpy change when one mole of gaseous at- oms are formed from a substance at its standard states
lonisation en- thalpy Δ _{ie} H ^{1st}	The enthalpy change when one mole of ions are formed from one moles of gaseous atoms under standard conditions
Electron affinity $\Delta H_{ea}^{1 \text{st}}$	The enthalpy change when one mole of gaseous at- oms gain one mole of electrons under standard condi- tions
Lattice associa- tion enthalpy A _{Lf} H	The enthalpy change when one mole of ionic lattice is formed from its gaseous ions under standard condi- tions
Lattice dissocia- tion enthalpy A _{Ld} H°	The enthalpy change when one mole of an ionic lattice dissociates into isolated gaseous ions under standard conditions
Hydration en- thalpy Δ _{нy} H°	The enthalpy change when one moles of gaseous ions are completely surrounded by water
Enthalpy of solution $\Delta_{sol}^{}$ H $^{\circ}$	The enthalpy change when I mole of solute is com- pletely dissolved in solvent so that the ions are infi- nitely diluted, under standard conditions.
Entropy	The measure of disorder within a system measured in J mol ^{.1}
Entropy change ΔS	Σ entropy products - Σ entropy reactants
Gibbs free ener- gy ∆G	A measure of the feasibility of a reaction. For a reaction to be feasible ΔG must $\ \leq 0$

2. Boi	rn-Haber cycle: basic layout			
1	Atomise			
2	Atomise	Na ⁺ (g) + Cl(g) + e ⁻ 3 +502 kJ/mol	-355 kJ/mol	
3	lonise	2 +121 kJ/mol	↓ Na⁺(g) + Cl⁻(g)	-
4	Electron affinity	Na(g) + 1/2 Cl₂(g) 1 +107 kJ/mol		
5	Lattice enthalpy	$6 \int \frac{\text{Na(s)} + 1/2 \text{ Cl}_2(g)}{-411 \text{ kJ/mol}}$	-786 kJ/mol	5
6	Enthalpy of formation	NaCl(s)		

4. Gibbs free energy		
$\Delta G = \Delta H - T \Delta S$		
ΔG	Gibbs free energy / KJ	
ΔН	Enthalpy change / KJ mol ^{.1}	
Т	Temperature / K	
ΔS	Entropy change / <u>J mol^{.1}</u>	