

Rate equations & Kp Knowledge organiser

1. Calculating rate

Tangent of a curve

Initial rate method

2. Rate equation

Rate= $k[A]^m[B]^n$

Rate	The rate of reaction	Mol dm ⁻³ s ⁻¹
k	The rate constant (temperature dependent)	variable
[A]	Concentration of A	Mol dm ⁻³
m	Order of reaction with respect to A	
[B]	Concentration of B	Mol dm ⁻³
n	Order of reaction with respect to B	

3. Arrhenius equation

$k=Ae^{-Ea/RT}$

k	The rate constant (temperature dependent)	variable
A	Arrhenius constant	S ⁻¹
e	Euler's number (magic number e)	2.71
Ea	Activation energy	KJ mol ⁻¹
R	Boyles gas constant	8.31 J/mol K
Т	Temperature	K

Rate equations & Kp Knowledge organiser

5. Determining the activation energy graphically k = -Ea/RT + lnAy-intercept= ln A y=mx+cY axis Rate constant Slope= (-Ea/R) ln k 1/T Reciprocal of tem-X axis perature -Ea/R Multiply by -R to m determine Ea 1/Temperature

6. Keywords Mole fraction The number of moles of a species The total number of moles

Partial pressure The mole fraction of a species x total pressure

7. Kp Expression

$$K_p = \frac{(P_{\rm C})^c (P_{\rm D})^d}{(P_{\rm A})^a (P_{\rm B})^b}$$

Кр	Equilibrium constant	Variable units
(P _c)	Partial pressure of C	Pascals
с	Order with respect to C	
(P _D)	Partial pressure of D	Pascals
d	Order with respect to D	
(P _A)	Partial pressure of A	Pascals
a	Order with respect to A	
(P_{B})	Partial pressure of B	Pascals
b	Order with respect to B	