

Electrode potentials & cells Knowledge organiser

1. Key vocabulary

Potential difference The difference in voltage between two points.

Electrode potential E° The is the potential difference of a cell built of two

electrodes: on the left-hand side of the cell diagram is the standard hydrogen electrode (SHE), and. on the right-hand side is the electrode in question under standard conditions (1 mol dm⁻³, 100kpa, 298k)

Standard hydrogen electrode (SHE)

The electrode given the electrode potential of 0.00v to

establish all other electrode potentials

Platinum electrode Unreactive electrode used in half cells when neither

species is a solid metal

Electrochemical cell A cell produced when 2 half cells of different electrode

potentials are linked by a salt bridge

Salt bridge A medium connecting two half cells. Contains inert

ions to allow charge to flow without interfering with

the electrochemistry

EMF Electro motive force. The potential difference of a cell

when no current flows

Feasible reaction A spontaneous redox reaction which generates a posi-

tive F° for the cell

Anode The electrode where oxidation happens. In an electro-

chemical cell this is the negative terminal

Cathode The electrode where reduction happens. In an electro-

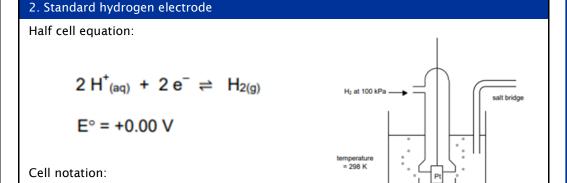
chemical cell this is the positive terminal. Often on the

right

Non-rechargeable cell A cell with a spontaneous reaction which cannot be

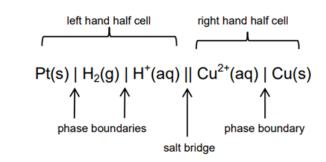
reverse

Rechargeable cell A cell with a spontaneous reaction which can be re-


versed by applying an electric current

Fuel cell A cell which generates an EMF providing a continuous

flow of chemicals are provided


Hydrogen fuel cell A fuel cell which uses hydrogen and oxygen to gener-

ate an EMF. Water is the only waste product

3. How to write conventional cell notation

 $Pt(s) | H_2(q) | H^{+}(aq)$

Highest oxidation state is nearest the salt bridge

If platinum electrode is present it goes on the far edges

4. Calculating the EMF of a cell

EMF=E_cell=E_right- E_left

Note: SHE always goes on the left