

Group II & Group VII knowledge organiser

1. Physical properties

Trends in group II,	Beryllium is r	not typical of the group and it is not	t considered here.		
Symbol	Z	Atomic radius (nm)	Melting point (K)	1 st ionisation energy (kJ/mol)	Density ρ
Mg	12	0.160	650	738	1.74
Ca	20	0.197	842	590	1.54
Sr	38	0.215	777	550	2.60
Ba	56	0.218	727 🗸	503	3.52 🗸

2. Reactivity with water

Reactivity with water INCREASES down the group.

Magnesium reacts slowly with liquid water, but rapidly when heated in the presence of steam.

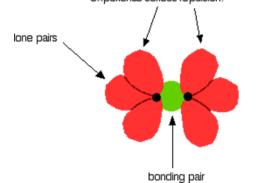
3. Hydroxides and sulphates - solubility

Hydroxides - M(OH) ₂	Sulphates – MSO ₄
• Varying solubility in water.	Colourless solids
• Solubility INCREASES as you descend the group.	• Solubility DECREASES as you descend the group.
• pH of the hydroxide in water varies.	• Thermal Decompose to form MO(s) and CO ₂ (g).
• pH increases as you descend the group.	

4. Application of group II compounds			
Chemical	Common name	Applications	
Mg(OH) ₂	Milk of magnesia	Treat indigestion, heartburns and wind.	
Ca(OH) ₂	Slaked lime	Neutralise fields and polluted lakes.	
BaSO ₄	Barium meal	Contrast medium for gut X-ray.	

Group II & Group VII knowledge organiser

1 Keywords	
Mean bond En- thalpy:	The average enthalpy change when one mole of a specific bond is bro- ken in a range of different gaseous compounds.
Displacement:	A displacement reaction is a type of reaction in which part of one reactant is replaced by another reactant.
Electronegativity:	The power of an atom to attract the electrons in a covalent bond.


2. Physical properties

Trends in group VII. A number of properties of Fluorine are untypical, this mainly stem from the fact that the mean bond enthalpy of the F-F bond is unexpectedly low. This is due to electron repulsion.

Symbol	Z	Electronegativity	Atomic (covalent) radius (nm)	Melting point (K)	Boiling point (K)
F	9	4.0	0.071	53	85
Cl	17	3.0	0.099	8172	238
Br	35	2.8	0.114	266	332
I	53	2.5	0.133	387	457

bond enthalpy (kJ mol⁻¹) 200100F-FCI-CI Br-Br I-I

As the atoms get smaller, lone pairs on the two atoms get dose enough together to experience serious repulsion.

3. Physical states

The physical state of the halogens are summarised below.

	-		
Symbol	In pure form	In non-polar solvents	In water
F	Pale yellow gas	(Reacts with solvents)	(Reacts with water)
CI	Pale green gas	Pale green solution	Pale green solution
Br	Dark red liquid	Orange solution	Orange solution
I	Grey solid	Purple solution	Insoluble

4. Oxidising abilities - Displacement reactions

The oxidising ability of the halogens decreases down the group.

You cannot investigate the oxidising ability of Fluorine in aqueous solution because it reacts with water.

	F ·	CI ·	Br ·	Ι.
F ₂	-	yes	yes	yes
Cl ₂	no	-	yes	yes
Br ₂	no	no	-	yes
I ₂	no	no	no	-

Group II & Group VII knowledge organiser

1.Keywords	
Disproportionation:	a reaction in which a substance is simultaneously oxidized and reduced, giving two different products
Precipitate (ppt):	deposited solid formed in a so- lution.

2. Reducing strengt	h	
The reducing ability of the group.	of the halide ions increases do	wn
Symbol	Atomic radius (nm)	
F ·	0.133	
CI ·	0.180	
Br	0.195	
·	0.215	

4. Reaction with silver ions

All metal halides (but fluoride) react with silver ion to form an insoluble precipitate. Dilute nitric acid is added before the reaction to get rid of any carbonate or hydroxide impurities.

 $Ag^{+}(aq) + X^{-}(aq) a AgX(s)$

Symbol	Observation	Halide salt solubility
Cl ·	White ppt	Dilute NH ₃
Br	Cream ppt	Concentrated NH ₃
I.	Pale yellow ppt	Insoluble in $NH_{_3}$

3. Reaction with concentrated sulphuric acid

Solid halides react with concentrated sulphuric acid giving different products based on their reducing powers.

			Summary table		
Chemical reactions.	Reaction A	Reaction B	Reaction C	Reaction D	Observations
Products	MeHSO ₄	SO ₂	S	H ₂ S	
Cl ·	\checkmark	×	×	×	•Steamy fumes (HCl) •Ppt (MeHSO4)
Br ⁻	\checkmark	\checkmark	×	×	•Steamy fumes (HBr) •Brown fumes (Br ₂) •Pungent gas (SO ₂)
L.	\checkmark	\checkmark	\checkmark	\checkmark	•Steamy fumes (HI) •Black ppt (I ₂) •Rotten egg smell (H ₂ S) •Yellow ppt (S)
Reaction A	$MeX(s) + H_2SO_4(l) a MeHSO_4(s) + HX(g)$			((g)	Types of reaction
Reaction B	$2H^{+}(aq) + 2X^{-}(aq) + H_{2}SO_{4}(I) a SO_{2}(g) + 2H_{2}O(I) + X_{2}(I)$			Acid-base	
Reaction C	$6H^{+}(aq) + 6X^{-}(aq) + H_{2}SO_{4}(I) a S(s) + 4H_{2}O(I) + 3X_{2}(s)$			Acid-base and redox	
Reaction D	$8H^{+}(aq) + 8X^{-}(aq) + H_{3}SO_{4}(l) a H_{3}S(g) + 4H_{3}O(l) + 4X_{3}(s)$			$(I) + 4X_{2}(s)$	Acid-base and redox

5. Reactivity of chlorine		
Reactivity with water:		
$Cl_2(g) + H_2O(I) \rightleftharpoons HCI(aq) + HCIO(aq)$ "chlorine water"	Disproportionation reaction	
Reactivity with water in sunlight:		
2Cl ₂ (g) + 2H ₂ O(l) à 4HCl(g) + O ₂ (g) Goes from pale green to colo		
Alternative chlorination of swimming pools:		
$NaClO(s) + H_2O(l) \Rightarrow Na^{+}(aq) + OH^{-}(aq) + HClO(aq)$	Water is kept slightly acidic	
Reactivity with alkali:		
Cl ₂ (g) + 2NaOH(aq) à Cl ² (aq) + NaClO(aq) + H ₂ O(l)	Disproportionation reaction	