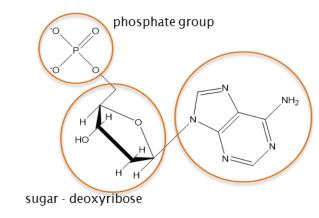
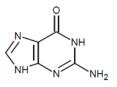


Amino acids, Proteins and DNA Knowledge organiser



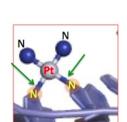
1. Keywords		3. Amino acids
Denaturing	destroy the characteristic properties of a biological macromolecule by heat, acidity, or other effect which disrupts its molecular conformation.	 There are 20 essential amino acids that make up proteins in the human body. •Amino acids contain both amine (NH2) and carboxyl (COOH) functional groups. The molecule is chiral (not glycine) because it has a carbon bonded to four different groups. Most naturally occurring amino acids are the (-) enantiomer.
Stereospecific	preferentially interacting a particular stereoisomeric form of the substrate.	 Amino acids exist as zwitterions – ions that have both a permanent positive charge and a permanent negative charge, but are neutral overall.
Zwitterions	molecule or ion having separate pos- itively and negatively charged groups.	 They can act both as acids and as bases α- amino acids have the amine group on the carbon next to the -COOH group
2. Denaturation		Proteins are sequences of amino acids joined by peptide links -CONH (condensation reaction). Proteins can have 4 structures: • Primary structure: the sequence of amino acids along a protein chain. The structure is held together by strong
 The primary structure can be hydrolyzed: by boiling a protein or a peptide in HCl. The structure breaks down into a mixture of all the constituent amino acids. Hydrolysis requires 24 hours and 6 mol dm⁻³ HCl since the covalent bond is a strong bond. Secondary structure can be disrupted by changes in pH or gentle heating (denaturing). 		 Secondary structure: Either an α-helix or a β-pleated sheet. Held together by hydrogen bonds which are much weaker than covalent bonds.
		 Tertiary structure: The secondary structure scan be folded into a 3-D shape. This is held together by hydrogen bonding, ionic interactions and sulphur-sulphur bonds. Quaternary structure: arrangement of two or more folded polypeptide chains that bond together with several
		types of bonds. Sulfur-sulfur bonds.
		 The amino acid cysteine has a side chain with a -CH₂SH group. When oxidised, two cysteine molecules can form a sulfur-sulfur bond that makes a bridge between the two molecules; this is called a disulfide bridge.
		• A double amino acid called cystine is formed.
	Apha heix	 4. Enzymes Enzymes are biological catalysts Stereospecificity: The active site of an enzyme can be so specific that many enzymes will only catalyse reactions of one enantiomeric form of a substrate.
	(c) Tertiary structure (c) Tertiary structure (c) Certiary structure (c) Certiary structure (c) Certiary structure (c) Certiary structure (c) Certiary structure	Aminoacids with acids and bases $H_{3}^{+}N - C - COOH H_{H}^{-} H_{3}^{+}N - C - COO H_{H}^{-} H_{3}^{+}N - C - COO H_{H}^{-} H_{2}^{+} H_{2}^{-}N - C - COO H_{H}^{-} H_{2}^{+} H_{2}^{-} H$

Amino acids, Proteins and DNA Knowledge organiser



Adenine

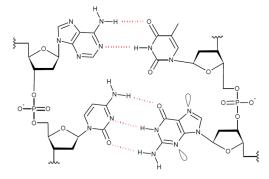
Cytosine



Thymine

Guanine

1. DNA


- DNA = Deoxyribonucleic acid
- A single strand of DNA is a polymer made up from four different monomers (nucleotides):
 - 1.Cytosine (C)
 - 2.Thymine (T)
 - 3.Adenine (A)
 - 4.Guanine (G)
- A nucleotide has three parts a phosphate, a sugar and a base
- A single strand of DNA is a polymer of nucleotides linked by covalent bonds between the phosphate group of one nucleotide and the sugar of another nucleotide. Formed in a condensation reaction.
- The DNA Double helix is stabilised by hydrogen bonds between bases of complementary chain (A-T, C-G)

2. Anticancer drug

- Cisplatin is an anticancer drug
- works by bonding to strands of DNA (Ligand replacement reaction), distorting their shape and preventing the replication of the cells.
- The molecule bonds to the lone pair of nitrogen atoms on two adjacent guanine bases on a strand of DNA forming a dative covalent bonds with the platinum, displacing the Cl⁻ ions.

Side effects:

• It will bond to DNA in healthy cells as well as cancerous ones.

