

COMPASSION

COURAGE

TAMWORTH SIXTH FORM

Curriculum overview

Subject	Mathematics	Year group	13
Vision statement:	At Landau Forte our curriculum exists to ensure all students regardless of background a students being challenged from their previous key stage learning experiences. Our bro and will provide the platform for preparing students with the foundations for examinat	and ability have the opportunity to unlock ad and balanced curriculum is ambitious, ion success.	their potential. We are committed to coherently planned and sequenced,
	our curriculum to empower all learners creating a pathway to success in university, the 'A curriculum exists to change the pupil, to give the pupil new power. One acid test for to clamber into the discourse and practices of educated people, so that they gain power	ir career and life: a curriculum is whether it enables even lo rs of the powerful.'	wer attaining or disadvantaged pupils
	As well as excellent academic success we aim to ensure our students leave us as polite and Curiosity are currently being embedded throughout our curriculum offer to ensure	and well-rounded young adults. Our new we continue to meet our social, emotion	v core values of Compassion, Courage val, spiritual and moral obligations.
Curriculum intent:	All students acquire the mathematical life skills necessary for the world of work, no mathew a strong belief that all students can achieve in Maths. Students will be taught to have a firm understanding of number bonds and be confider Students will be stretched and challenged through problem solving tasks to develop restudents are encouraged to show courage through attempting questions in environme judgmental when questions are answered incorrectly. Students are also encouraged to real life applications of the Maths that they are learning. This will be achieved by staff working together in planning lessons that allow ALL stude Common lesson planning formats; Expert knowledge of the subject; Differentiated mathematical mathematical segular use of AfL to assess progress in a lesson; Regular use of formal marking and fee Regular summative assessments to ensure appropriate progress and intervention.	tter what their starting point is, catering the number of the starting point is, catering the silience. Int where other students show compassic show curiosity through asking questions ints to achieve/ exceed their potential thr terial; edback;	for all abilities and backgrounds. We lving problems. on through a culture of being non- and taking a genuine interest in the ough:
Threshold Concepts (TCs):	TC1 Algebraic manipulation - This concept involves recognising mathematical properties TC2 Number sense - This concept involves understanding the number system and how TC3 Shape facts - This concept involves recognising the names and properties of geome TC4 Multiplicative reasoning - This concept involves using ratio and proportion and und TC5 Representing and interpreting data - This concept involves interpreting, manipulat TC6 Calculator skills - This concept involves fluent application of mathematical operation TC7 Understanding and calculating risk - This concept involves knowing the rules of pro-	es and relationships using symbolic repres they are used in a wide variety of mather etry shapes and angles. derstanding of reciprocals in real world ap ing and presenting data in various ways. ons on a scientific calculator bability in the correct context	entation natical ways plications

TAMWORTH SIXTH FORM	CURIOSITY	(COMPASSIO	N	COURAGE	TANWORTH SIXTH FORM
KS4 National Curriculum summary:	The national curriculum for become fluent in pupils develop co reason mathematic can solve problem problems into a s Mathematics is an intercor for key stage 4 is organised learning from key stage 3 t their mathematical knowle	r mathematics aims to ensur the fundamentals of mather nceptual understanding and tically by following a line of e cal language ns by applying their mathem eries of simpler steps and pe inected subject in which pup l into apparently distinct dor o further develop fluency, m rdge wherever relevant in ot	re that all pupils: matics, including through value I the ability to recall and app enquiry, conjecturing relation natics to a variety of routine a ersevering in seeking solution pils need to be able to move mains, but pupils should dev nathematical reasoning and of her subjects and in financial	ried and frequent practice w ly knowledge rapidly and acc nships and generalisations, a and non-routine problems w ns. fluently between representa elop and consolidate connec competence in solving increa contexts.	ith increasingly complex pro curately. and developing an argument ith increasing sophistication ations of mathematical ideas ctions across mathematical id usingly sophisticated problem	blems over time, so that , justification or proof , including breaking down S. The programme of study deas. They should build on ns. They should also apply
Learner skills:	Critical thinking	Organisation	Collaboration	Adaptability	Oracy	Self-quizzing
	CRITICAL THINKING	ORGANISATION	COLLABORATION	ADAPTABILITY	ORACY	SELF QUIZZING
	Term 1 Aug-Oct	Term 2 Nov-Dec	Term 3 Jan-Feb	Term 4 Mar-Apr	Term 5 Apr-May	Term 6 Jun-Jul
Big picture questions:	How else can we write complex numbers? What is De Moivre's Theorem? How do complex numbers relate to trigonometric identities?	How can we find volumes of revolution when curves are defined parametrically? Can we find volumes of revolution for more complex functions?	How do we solve first order differential equations? How do we solve second order differential equations?	How can we model situations using differential equations? What is harmonic motion? How can we solve linear programming problems		

COMPASSION

TPASS.					 (7A53)
	How do we use the	What are polar	How do I use the vertex	with more than 2	
	method of differences	coordinates?	testing method to solve	variables?	
	to find the sum of a		optimisation problems?		
	finite series?	What are hyperbolic		What are probability	
		functions?	How do I use the	generating functions?	
	How do we write the		objective line method to	0 0	
	Maclaurin series		solve optimisation	What is a Type I and	
	expansion of a function?		problems?	Type II error?	
	-		-		
	What is an improper		How do I use Chi-	What is the size and	
	integral?		squared tests to test	power of a test?	
	C C		goodness of fit?		
	How do we use		-		
	trigonometric		How can I apply good		
	substitution to integrate		ness of fit tests to other		
	rational functions?		distributions?		
	How do we use partial				
	fractions to integrate				
	functions?				
Content	TC1 Algebraic	TC1 Algebraic	TC1 Algebraic	TC1 Algebraic	
(Linked to TCs):	manipulation	manipulation	manipulation	manipulation	
(TC2 Number sense	TC2 Number sense	TC2 Number sense	TC2 Number sense	
	TC3 Shape facts	TC3 Shape facts	TC3 Shape facts	TC3 Shape facts	
	TC6 Calculator skills	TC6 Calculator skills	TC5 Representing and	TC5 Representing and	
			interpreting data	interpreting data	
	Complex Numbers	Volumes of revolution	TC6 Calculator skills	TC6 Calculator skills	
	Exponential form of	Volumes of revolution			
	complex numbers	around the x-axis	Methods in Differential	Modelling with	
	Multiplying and dividing	Volumes of revolution	Fquations	Differential Equations	
	complex numbers	around the y-axis	First-order differential	Modelling with first-	
	De Moivre's theorem	Volumes of revolution	equations	order differential	
	Trigonometric identities	parametrically defined	Second-order	equations	
	Sums of series	curves	homogenous differential	Simple harmonic motion	
	nth roots of a complex	Modelling with volumes	equations	Damped and forced	
	number	of revolution		harmonic motion	

COMPASSION

				· · · · · ·
Solving geometric	Polar Coordinates	Second-order non-	Coupled first-order	
problems	Polar coordinates and	homogenous differential	simultaneous differential	
	equations	equations	equations	
Series	Sketching curves	Using boundary		
The method of	Area enclosed by a polar	conditions	Simplex Algorithm	
differences	curve		Formulating linear	
Higher derivatives	Tangents to polar curves		programming problems	
Maclaurin series		Linear Programming	The simplex method	
Series expansions of	Hyperbolic Functions	Linear programming	Problems requiring	
compound functions	Introduction to	problems	integer solutions	
	hyperbolic functions	Graphical methods	Two-stage simplex	
Methods in Calculus	Inverse hyperbolic	Locating the optimal	method	
Improper integrals	functions	point	The Big-M method	
The mean value of a	Identities and equations	Solutions with integer		
function	Differentiating	values	Probability Generating	
Differentiating inverse	hyperbolic functions		Functions	
trigonometric functions	Integrating hyperbolic	Chi-squared tests	Probability generating	
Integrating using partial	functions	Goodness of fit	functions	
fractions		Degrees of freedom and	Probability generating	
		the chi-squared family of	functions of standard	
		distributions	distributions	
		Testing a hypothesis	Mean and variance of a	
		Testing the goodness of	distribution	
		fit with discrete data	Sums of independent	
		Using contingency tables	random variables	
		Apply goodness-of-fit		
		tests to geometric	Quality of Tests	
		distributions	Type I and Type II errors	
			Finding Type I and Type II	
			errors using the normal	
			distribution	
			Calculate the size and	
			power of a test	
			The power function	

COMPASSION

(TASP)					
Key vocabulary:	Complex Numbers	Volumes of Revolution	Methods in Differential	Modelling with	
	Imaginary number,	Integrate, volume of	Equations	Differential Equations	
	complex number,	revolution, radians,	First order differential	Differential equations,	
	exponential form, Euler's	function, parametric	equation, separation of	first order differential	
	relation, identity, Argand	equations, modelling.	variables, general	equations, simple	
	diagram, De Moivre's		solution, integrating	harmonic motion,	
	theorem, trigonometric	Polar Coordinates	factor, second-order	acceleration,	
	identities, series, nth	Pole, initial line,	differential equations,	displacement, line of	
	roots, nth roots of unity,	trigonometry, polar	homogeneous, auxiliary	motion, centre of	
	geometric problems.	coordinates, loops, polar	equation, non-	oscillation, damping	
		curves, cardioid,	homogeneous, particular	force, damped harmonic	
	Series	tangents, parallel,	integral, boundary	motion, heavy damping,	
	Method of differences,	perpendicular,	conditions.	critical damping, light	
	series, sigma,			damping, equilibrium	
	derivatives, Maclaurin	Hyperbolic Functions	Linear Programming	position, forced	
	series, valid series,	Hyperbolic sine,	Decision variables,	harmonic motion,	
	expansion, compound	hyperbolic cosine,	objective function,	coupled first-order linear	
	functions.	hyperbolic tangent,	constraints, inequalities,	differential equations.	
		inverse hyperbolic	feasible solution, optimal		
	Methods in Calculus	functions, domain,	solution, maximisation,	Simplex Method	
	Improper integrals,	range, restricted domain,	minimisation, non-	Decision variables,	
	infinite, convergent,	identities, equations,	negativity, graphical	objective, constraints,	
	divergent, limits, mean	Osborn's rule,	method, objective line,	slack variables, simplex	
	value, inverse		vertex testing, integer	method, simplex	
	trigonometric functions,		solution.	tableau, basic variable,	
	partial fractions,			basic feasible solution,	
			Chi-squared Tests	pivot, two-stage simplex	
			Goodness of fit,	method, surplus	
			expected frequency, null	variable, non-basic	
			hypothesis, alternative	variable, artificial	
			hypothesis, theoretical	variable, big-M method.	
			distribution, degrees of		
			freedom, chi-squared,	Probability Generating	
			hypothesis test, discrete	Functions	
			uniform distribution,	Probability generating	
			binomial distribution,	function, discrete	
			Poisson distribution,	random variable,	

COMPASSION

ATPASSIE						ATPASSIC
Assessment:	Unit Assessments	Unit Assessments PPE 1	contingency tables, geometric distributions.	probability mass function, dummy variable, geometric distribution, negative binomial distribution, Quality of Tests Type I errors, Type II errors, size of a test, power of a test, actual significance level, hypothesis test, normal distribution, sample variance, significance level, Unit Assessments PPE 2		
Key/Historical	Complex Numbers	Volumes of Revolution	Methods in Differential	Modelling with	•	•
misconceptions	 Assuming laws 	Mixing up	Equations	Differential Equations		
in this unit:	 of indices work the same way with complex numbers as real numbers. Using De Moivre's theorem for complex numbers in exponential form. Not choosing consecutive values when getting distinct 	volumes of revolution when rotating around the x-axis or y- axis. Not rewriting the limits in terms of t when using parametric equations. Polar Coordinates Not drawing a diagram to see which quadrant the pole lies in.	 Using the wrong method eg integrating factor instead of separating the variables. Trying to find a particular solution to a second-order differential equation without knowing two boundary conditions. 	 Using the wrong form of harmonic motion. Simplex Method Making numerical errors with pivots in the simplex tableau. Incorrectly altering all constraints including non- negativity constraint when 		

COMPASSION

	roots in the nth	 Not measuring 	 Using the wrong 	using slack		
	roots of unity.	the polar angle	form of	variables.		
Series		from the	particular			
•	Not writing	positive x-axis.	integral.	Probability-Generating		
	enough terms in	Hyperbolic Functions	Linear Programming	Functions		
	the method of	 Thinking sinh is 	 Incorrectly 	 Quoting the 		
	differences to	an even	writing some	standard result		
	see which terms	function.	constraints.	of the		
	cancel.	 Thinking cosh is 	 Shading the 	probability		
•	Writing a	an odd function.	wrong side of	generating		
	Maclaurin series	That the	the inequality	function of a		
	when the series	derivative of	constraints.	Poisson random		
	does not	cosh is –sinh not	 Not realising a 	variable when		
	converge.	sinh.	problem	asked for first		
•	Using degrees	•	requires integer	principles.		
	instead of		solutions.	Quality of Tests		
	radians in		Chi Squared Tests	 Mixing up Type I 		
	expansions of		 Thinking a 	and Type II		
	trigonometric		higher value of	errors.		
	functions.		X ² means the	 Trying to 		
Metho	ds in Calculus		observed	calculate the		
•	Not writing the		distribution and	probability of a		
	correct limiting		theoretical	Type II error		
	process in		distribution are	without		
	working.		more similar.	knowing the		
•	Not splitting the		 Using a two- 	value of the		
	integral into the		tailed	parameter p.		
	sum of two		hypothesis test			
	improper		for goodness of			
	integrals when		fit.			
	both limits of an		Not combining			
	integral are		columns if the			
	infinite.		expected			
			trequency in			
			any column is			
			less than 5.		L]	<u> </u>

TAMWORTH SIXTH FORM					
CURIOSITY COR	ASSIC	A.COURAGE			

COMPASSION

COURAGE

Sequencing:

We have chosen to sequence the further maths curriculum in this way for a number of reasons. A lot of topics build on each other, for example Argand diagrams can only be learnt once complex numbers have been completed, the same for matrices and linear transformations. Some topics have been moved, such as volumes of revolution, to allow for the pre-requisite knowledge to be taught in A Level Maths first. Some Year 13 A Level knowledge is incorporated into the Year 12 Further Maths curriculum to allow for students to have the pre-requisite knowledge for some of the first Year 13 topics.